Source code for diffsim.mesh

"""
Tetrahedral mesh representation for finite element simulation

This module provides the TetrahedralMesh class, which represents volumetric geometry
using tetrahedral elements. The mesh stores vertex positions and element connectivity,
and computes the deformation gradient for each element during simulation.

The deformation gradient :math:`\\mathbf{F}` maps from the reference (rest) configuration
to the current (deformed) configuration:

.. math::

    \\mathbf{F} = \\mathbf{D}_s \\mathbf{D}_m^{-1}

where :math:`\\mathbf{D}_s` contains edge vectors in the current configuration and
:math:`\\mathbf{D}_m` contains edge vectors in the rest configuration.
"""

import torch
import numpy as np
import meshio


[docs] class TetrahedralMesh: """ Tetrahedral mesh for finite element simulation This class represents a volumetric mesh using tetrahedral elements. Each tetrahedron is defined by four vertices, and the mesh computes quantities needed for FEM simulation such as the deformation gradient, element volumes, and shape matrices. The mesh automatically computes and caches rest-state quantities when initialized: - :math:`\\mathbf{D}_m`: Rest shape matrix for each element (3×3) - :math:`\\mathbf{D}_m^{-1}`: Inverse rest shape matrix - :math:`V_0`: Rest volume for each element Attributes: vertices (torch.Tensor): Vertex positions :math:`(N \\times 3)` tetrahedra (torch.Tensor): Element connectivity :math:`(M \\times 4)` indices num_vertices (int): Number of vertices :math:`N` num_elements (int): Number of tetrahedral elements :math:`M` Dm (torch.Tensor): Rest shape matrices :math:`(M \\times 3 \\times 3)` Dm_inv (torch.Tensor): Inverse rest shape matrices :math:`(M \\times 3 \\times 3)` rest_volume (torch.Tensor): Rest volumes :math:`(M,)` device (torch.device): Device where tensors are stored """
[docs] def __init__(self, vertices, tetrahedra, device="cpu"): """ Initialize tetrahedral mesh Args: vertices: :math:`(N, 3)` array of vertex positions tetrahedra: :math:`(M, 4)` array of tetrahedron indices device: 'cpu' or 'cuda' """ self.device = torch.device(device) # Convert to torch tensors if isinstance(vertices, np.ndarray): vertices = torch.from_numpy(vertices).float() if isinstance(tetrahedra, np.ndarray): tetrahedra = torch.from_numpy(tetrahedra).long() self.vertices = vertices.to(self.device) self.tetrahedra = tetrahedra.to(self.device) self.num_vertices = self.vertices.shape[0] self.num_elements = self.tetrahedra.shape[0] # Compute reference shape matrices (Dm in standard FEM notation) self._compute_rest_state()
def _compute_rest_state(self): """Compute rest state quantities for each element""" # Get vertices for each tetrahedron v0 = self.vertices[self.tetrahedra[:, 0]] # (M, 3) v1 = self.vertices[self.tetrahedra[:, 1]] v2 = self.vertices[self.tetrahedra[:, 2]] v3 = self.vertices[self.tetrahedra[:, 3]] # Compute edge vectors in reference configuration # Dm = [v1-v0, v2-v0, v3-v0] self.Dm = torch.stack([v1 - v0, v2 - v0, v3 - v0], dim=-1) # (M, 3, 3) # Compute inverse of Dm for each element (robust to degeneracy) # Use pseudo-inverse to avoid crashes on singular elements self.Dm_inv = torch.linalg.pinv(self.Dm) # (M, 3, 3) # Compute rest volume for each tetrahedron # Volume = 1/6 * |det(Dm)| self.rest_volume = torch.abs(torch.det(self.Dm)) / 6.0 # (M,)
[docs] def compute_deformation_gradient(self, current_vertices): """ Compute deformation gradient F for each element Args: current_vertices: :math:`(N, 3)` current vertex positions Returns: F: :math:`(M, 3, 3)` deformation gradient for each element """ # Get current vertices for each tetrahedron v0 = current_vertices[self.tetrahedra[:, 0]] v1 = current_vertices[self.tetrahedra[:, 1]] v2 = current_vertices[self.tetrahedra[:, 2]] v3 = current_vertices[self.tetrahedra[:, 3]] # Compute current edge vectors # Ds = [v1-v0, v2-v0, v3-v0] Ds = torch.stack([v1 - v0, v2 - v0, v3 - v0], dim=-1) # (M, 3, 3) # Deformation gradient F = Ds * Dm_inv F = torch.bmm(Ds, self.Dm_inv) # (M, 3, 3) return F
[docs] @classmethod def from_file(cls, filename, device="cpu"): """Load mesh from file using meshio""" mesh = meshio.read(filename) # Extract vertices vertices = mesh.points # Extract tetrahedra tetrahedra = None for cell_block in mesh.cells: if cell_block.type == "tetra": tetrahedra = cell_block.data break if tetrahedra is None: raise ValueError(f"No tetrahedral elements found in {filename}") return cls(vertices, tetrahedra, device)
[docs] @classmethod def create_cube(cls, resolution=5, size=1.0, device="cpu"): """ Create a cube mesh with tetrahedral elements Args: resolution: number of divisions along each axis size: size of the cube device: 'cpu' or 'cuda' """ # Create grid of points n = resolution x = np.linspace(0, size, n) y = np.linspace(0, size, n) z = np.linspace(0, size, n) # Create vertices vertices = [] vertex_map = {} idx = 0 for i in range(n): for j in range(n): for k in range(n): vertices.append([x[i], y[j], z[k]]) vertex_map[(i, j, k)] = idx idx += 1 vertices = np.array(vertices) # Create tetrahedra (5 tets per cube) tetrahedra = [] for i in range(n - 1): for j in range(n - 1): for k in range(n - 1): # Get 8 corners of cube v000 = vertex_map[(i, j, k)] v001 = vertex_map[(i, j, k + 1)] v010 = vertex_map[(i, j + 1, k)] v011 = vertex_map[(i, j + 1, k + 1)] v100 = vertex_map[(i + 1, j, k)] v101 = vertex_map[(i + 1, j, k + 1)] v110 = vertex_map[(i + 1, j + 1, k)] v111 = vertex_map[(i + 1, j + 1, k + 1)] # Subdivide cube into 5 tetrahedra tetrahedra.append([v000, v001, v011, v111]) tetrahedra.append([v000, v001, v101, v111]) tetrahedra.append([v000, v100, v101, v111]) tetrahedra.append([v000, v100, v110, v111]) tetrahedra.append([v000, v010, v011, v111]) tetrahedra = np.array(tetrahedra) return cls(vertices, tetrahedra, device)