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Introduction

These are my notes for the seminars that happen in the Theory Group at The
University of Toronto. Many thanks to Professor Allan Borodin for allowing me
to attend the Theory Group seminars and helping out.

A PDF of these notes is available at https://rishit-dagli.github.io/

cs-theory-notes/main.pdf. An online version of these notes are available at
https://rishit-dagli.github.io/cs-theory-notes.

The Theory Group focuses on theory of computation. The group is interested
in using mathematical techniques to understand the nature of computation and
to design and analyze algorithms for important and fundamental problems.

The members of the theory group are all interested, in one way or another,
in the limitations of computation: What problems are not feasible to solve on a
computer? How can the infeasibility of a problem be used to rigorously construct
secure cryptographic protocols? What problems cannot be solved faster using
more machines? What are the limits to how fast a particular problem can be
solved or how much space is needed to solve it? How do randomness, parallelism,
the operations that are allowed, and the need for fault tolerance or security affect
this?
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1 Lower Bounds for Locally Decodable Codes
from Semirandom CSP Refutation

7th October 2022

The related paper: Combinatorial lower bounds for 3-query LDCs by Alrabiah
et al. [1]. Seminar by Peter Manohar. [2] [3]

1.1 Abstract

A code C is a q-locally decodable code (q-LDC) if one can recover any chosen
bit bi of the k-bit message b with good confidence by randomly querying the
n-bit encoding x on at most q coordinates. Existing constructions of 2-LDCs
achieve blocklength n = exp(O(k)), and lower bounds show that this is in fact
tight. However, when q = 3, far less is known: the best constructions have
n = subexp(k), while the best known lower bounds, that have stood for nearly
two decades, only show a quadratic lower bound of n ≥ Ω(k2) on the block-
length.

In this talk, we will survey a new approach to prove lower bounds for LDCs
using recent advances in refuting semirandom instances of constraint satisfaction
problems. These new tools yield, in the 3-query case, a near-cubic lower bound
of n ≥ Ω̃(k3), improving on prior work by a polynomial factor in k.

1.2 Locally Decodable Codes

Take codes b ∈ 0, 1k → x ∈ 0, 1n

Codes x are read by the decoder, i ∈ [k], b̂i ∈ 0, 1

Definition 1. C is a (q, δ, ϵ)-locally decodable if for any x with △(x,Enc(b)) ≤
δn, Decx(i) = bi w.p. ≥ 1

2 + ϵ for any i.

Ask the question, what is the best possible rate for a q-LDC given a q?

q Lower Bound Upper Bound

2 2Ω(k) ≤ n n ≤ 2k

3 k2 ≤ n n ≤ exp(ko(1))
O(1), even k

q
q+1 ≤ n n ≤ exp(ko(1))

O(1), odd k
q+1
q−1 ≤ n n ≤ exp(ko(1))

Focus on the case q = 3, we have gotten better bounds:

k ≤ n ≤ 2k (1)

k2 ≤ n ≤ exp(exp(
√

log k log log k))
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In [1], they show that a better minimum bound can be found than these existing
ones for q = 3:

k3 ≤ n (2)

The main result is that:

Theorem 1. Let C be a (3, δ, ϵ)-locally decodable codes. Then n ≥ Ω̃δ,ϵ(k
3).

Semi-random CSP refutation comes to our aid to prove this! The intuitive way
to put this theorem is that q-LDC lower bound is same as refuting ”LDC”
q-XOR.

1.3 How to prove the Theorem

The idea:

• q-LDC lower bound is same as refuting ”LDC” q-XOR

– CSP Refutation

• Proof of existing q-LDC lower bound for q even

• Proof sketch of k3 lower bound

1.4 Normally Decodable Codes

We can see that the decoder we have can arbitrary but WLOG we can assume
there are q-unif hypergraphs H1, H2, · · ·Hk where every Hi is such that:

Hi ⊆
(
[n]

q

)
We can also see that:
Each Hi is a matching such that |Hi| ≥ δn
and, Dec(i) picks C ← Hi and outputs

∑
j∈C xj

One such example is the Hadmard code:

b ∈ 0, 1k 7→ f = (⟨b, v⟩)kv∈0,1 (3)

bi = f(ei) = f(v) + f(v + ei)

Can think of this as v and v + ei are connected.

Matching vector codes are ≈ Zh
m

4



1.5 Proof: Going from LDC to XOR

We suppose that our code is linear and that there exists q-unif hypergraphs
H1, H2, · · ·Hk.

We also know that:
Each Hi is a matching such that |Hi| ≥ δn
and, Dec(i) picks C ← Hi and outputs

∑
j∈C xj

So, we start by considering a q-XOR instance ψb:

Vars: {xj}j∈[n]

Over Equations:
∑
j∈C

xj = bi,∀i ∈ [k], C ∈ Hi

We can write down the maximum fraction of satisfiable constraints: val(ψb) = 1
for any b ∈ 0, 1k.

It is sufficient now if we can argue that ψb is unsat with high probability for
some random b when n≪ k

q
q−2 .

Now we need to refute XOR, there are many ways to argue unsatisfiability of
an XOR instance. One reason why we can not use probablistic approaches here
is that ψb only has k bits of randomness.

One way we can have some success here is to use a refutation algorithm

ψ → A→ algval(ψ)

With this the guarantee then would be val(ψ) ≤ algval(ψ) which is similar to
saying that if algval(ψ) < 1 then A refutes ψ. The ideal goal would be to refute
random ψ with m constraints with high probability

However, we take a look at semi-random XOR. Our refutation algorithm and
the guarantee will still be the same:

ψ → A→ algval(ψ)

with the guarantee that val(ψ) ≤ algval(ψ).

So, now we generate semi-random ψw/m constraints:

• The worst case would be random q-unif hypergraph

• Random RHS bc for each C ∈ H
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The equation we have is: ∑
j∈C

xj = bc (4)

And we also already know that

ψb is
∑
j∈C

And, xj = bi, i ∈ [k], C ∈ Hi.
ψb is almost semi-random.

Thus, we have shown 1.3 Part 1 of Proof.

1.6 Proof: Existing q-LDC lower bound for q even

q-LDC XOR instance ψb is encoded by:

• q-uniform hypergraph matchings {H1 · · ·Hk}

• right-hand sides are random bi ∈ {±1}

• We have constraints
∏
j∈C

xj = bi for all i and C ∈ Hi

We now have a goal to argue that ψb unsat with high probability for random
when b when n≪ kq/(q−2)

frac. constraints satisfied by x ∈ {±1}n is 1
2 + f(x)

2 .

Here f(x) is:

f(x) =
1

m

∑
i

bi
∑
C∈Hi

∏
j∈C

xj (5)

m = k · δn

This makes our goal to be to certify with high probability that:

max
x∈{±1}n

f(x) < 1 when n≪ k
q

q−2 (6)

We will now try to refute ψb. With Equation 5 and Equation 6 to refute ψb is
like showing:

w.h.p. max
x∈{±1}n

f(x) < 1 where f(x) =
1

m

∑
i

bi
∑
C∈Hi

∏
j∈C

xj (7)

when n≪ k
q

q−2 .
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The idea is to design a matrix A ∈ RN×N so that:

f(x) ≤ ||A||∞→1 = max
z,w∈{±1}N

zTAw

As shown by Wein et al. [4] the matrix A can be indexed by

S ∈
(
[n]

l

)
Assign x 7→ y such that yTAy ∝ f(x)
and ys :=

∏
j∈S

xj which is simply the tensor product.

We need to now be able to answer how to set A(S, T )

yTAy =
∑
S,T

ySyTA(S, T ) =
∑
S,T

A(S, T )
∏

j∈S⊕T

xj (8)

Which shows that we are actually using symmetric difference here.

We say that if S ⊕ T = C ∈ hi then
∏

j∈S⊕T

xj = bi

=⇒ A(S, T ) = bi if S ⊕ T = C ∈ Hi

yTAy =

k∑
i=1

bi
∑
C∈hi

∑
S⊕t=C

∏
j∈C

xj = Dmf(x) (9)

Here D = number of S, T where S ⊕ T = C.

Simplifying an earlier statement we can also say from here that: AC(S, T ) = 1
if S ⊕ T = C.

For which Ai =
∑

C∈hi
AC and A =

∑k
i=1 biAi

Set yS :=
∏
j∈S

xj

yTAy = Dmf(x) =⇒ Dmf(x) ≤ ||A||∞→1

Note that the way we defined D here it only depends on |C| = q, we can say:

D =

(
q
q
2

)(
n− q
l − q

2

)
Also we know Ac ∈ RN×N and N =

(
n
l

)
.

We have already proven that ||A||∞→1 ≥ Dmmaxx f(x) ≥ Dm ≥ Dδnk
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It is also interesting to note that ||A||∞→1 ≤ N ||A||2 and we still need to be
able to show that with high probability that ||A||∞→1 is not too large.

Matrix Bernstein: with high probability over bi, ||A||2 ≤ △
√
kl where △ is the

maximum number of 1’s in a row in any Ai.

Expected number of 1’s per row is δnD
N ∼ n(

l
n )

q/2.

We can optimistically suppose that △ ∼ n( l
n )

q/2 however this also needs l ≥
n1−2/q.

Then D · δnk ≤ ||A||∞→1 ≤ N△
√
kl

=⇒ k ≤ l since △ ∼ δnD
N

Now take l = n1−2/q =⇒ kq/(q−2) ≤ n

So, △ = 2l
q

Because Hi are matchings, a random row will have only ≈ δnD
N 1’s.

The idea now is to prune off all the bad rows or columns in A to get B such
that:

||A||∞→1 ≤ ||B||∞→1 + o(N)

And, △B ∼ δn( l
n )

q/2

And now we can just use B instead which will prove q-LDC lower bound for q
even.

1.7 Proof: k3 lower bound

Recall, q-LDC XOR instance ψb is encoded by:

• q-uniform hypergraph matchings {H1 · · ·Hk}

• right-hand sides are random bi ∈ {±1}

• We have constraints
∏
j∈C

xj = bi for all i and C ∈ Hi

The goal is argue that ψb is unsatisfiable with high probability for random b.
And the idea is to design a matrix A ∈ RN×N so that:

f(x) ≤ ||A||∞→1 = max
z,w∈{±1}NzTAw
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The previous approach fails because the A from before requires q to be even.

One attempt is to represent rows as |S| = l and columns as |T | = l+1. However
this will only get us to k ≤

√
n.

We need to derive more constraints, using Ci ⊕ Cj get us to nk constraints so
each nj is in ≈ k constraints =⇒ new nk2 constraints.

The matrix A is indexed by S, A(S, T ) = bibj . The calculation is now:

nk2D ≤ ||A||∞→1 ≤ N△
√
kl

An optimist approach is △ ∼ NkD
N = nk( l

n )
2

=⇒ l ≥
√

n
k

=⇒ k ≤ n =⇒ k3 ≤ n

The row pruning tricks would still work provided that any {u, v} is in at most
polylog(n) constraints.

1.8 Conclusion

This proof for q = 3 is not generalizable for all odd q and neither is a reduction
to 2-LDC. This is particularly true because of the row pruning step.
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2 Algorithms for the ferromagnetic Potts model
on expanders

14th October 2022

The related paper: Algorithms for the ferromagnetic Potts model on expanders
by Carlson et al. [5]. Seminar by Aditya Potukuchi.

2.1 Abstract

The ferromagnetic Potts model is a canonical example of a Markov random
field from statistical physics that is of great probabilistic and algorithmic in-
terest. This is a distribution over all 1-colorings of the vertices of a graph
where monochromatic edges are favored. The algorithmic problem of efficiently
sampling approximately from this model is known to be #BIS-hard, and has
seen a lot of recent interest. I will outline some recently developed algorithms
for approximately sampling from the ferromagnetic Potts model on d-regular
weakly expanding graphs. This is achieved by a significantly sharper analysis
of standard ”polymer methods” using extremal graph theory and applications
of Karger’s algorithm to count cuts that may be of independent interest. I will
give an introduction to all the topics that are relevant to the results.

2.2 The Ferromagnetic Potts Model

Figure 1: A sample graph
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We start by defining some basic notation:

• G: finite graph on vertices V

• q ∈ N, we are interested in q-colourings of the vertices in G

• m(χ): number of monochromatic edges induced by a colouring χ

• Distribution on colourings given by p(χ) ∝ exp(β ·m(χ))

• β ∈ R: parameter, inverse temperature

Notice that for β < 0 it means that we take the antiferromagnetic case. Here
we talk more about when β > 0 meaning it is ferromagnetic.

This could have quite some applications:

• Modelling: Social networks, physics, chemistry, etc

• Markov Random field: Probabilistic Inference

• Connection to UGC Coulson et al. [6]

• and more.

2.3 The Problem

we know p(χ) ∝ exp(β ·m(χ))

Now for β = 0 it means that we are doing a uniform q-coloring of V

For β = −∞ we do a uniform proper coloring of G

What we need to do is given G and β, efficiently sample a coloring from this
distribution.

p(χ) =
exp(βm(χ))∑
χ exp(βm(χ))

(10)

We add the normalizing factor here:

Nomalizing factor =
∑
χ

exp(βm(χ))

Now we can also say, ∑
χ

exp(βm(χ)) =: ZG(q, β) (11)

A partition function of the model/distribution is very important for this POV.

Our problem is that given G and β we want to efficiently sample a color distri-
bution. We give 2 facts:

11



1. It is enough to compute ZG(q, β)

2. #P-hard

We now modify the problem as: Given G and β, efficiently sample approxi-
mately a colouring from this distribution.

ϵ approximation will have us sample a law from q such that ||p − q||TV D ≤ ϵ,
thus

||p− q||TV D :=
1

2

∑
χ

|p(χ)− q(χ)| (12)

We modify our original problem template to now be: Given G and β, efficiently
sample ϵ-approximately a colouring from this distribution.

Fully Polynomial Almost Uniform Sampler can allow us to sample ϵ-approximately
in poly(G, 1ϵ ) time.

Instead Fully Polynomial Time Approximation Scheme: 1 ± ϵ-factor approxi-
mation in poly(G, 1ϵ ) time.

We can also show for a fact that FPTAS ⇐⇒ FPAUS.

2.4 Antiferromagnetic Potts model

The Antiferromagnetic Potts model:

p(χ) ∝ expβ ·m(χ) (13)

where β < 0

Given G and β < 0, we want to be able to give an FPAUS for this distribution.
It is then equivalent to instead work on the problem: given G and β < 0, give
an FPTAS for its partition function ZG(q, β).

From some previous work, we know that there exists a βc such that:

• for β < βc, FPTAS exists

• For β < βc, no FPTAS unless NP = RP

We can say that this is #BIS-hard (bipartite independent sets). Thus, doing this
is at least as hard as an FPTAS for the number of independent sets in bipartite
graphs. If our graph has no bipartiteness then this becomes a NP-hard problem.

For now, let’s consider the problem given a bipartite graph G, design an FPTAS
for the number of individual sets in G. This accurately captures the difficulty
of: the number of proper q-colorings of a bipartite graph for q ≥ 3, the number
of stable matchings, the number of antichains in posets.
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2.5 Main Results

For our purposes we assume that G is always a d-regular graph on n vertices.
Now for a set S ⊂ V , we define it’s edge boundary as:

▽(S) := #(uv ∈ G|u ∈ S, v /∈ S)
Now, G is an η expander if for every S ⊂ V of size at most n/2, we have
|▽(S)| ≥ η|S|. For example we can take a discrete cube Qd with vertices {0, 1}d,
uv is an edge if u and v differ in exactly 1 coordinate.
Using a simplification of the Harper’s Theorem we can say that Qd is a 1-
expander [7].

Theorem 2. For each ϵ > 0 and there is a d = d(ϵ) and q = q(ϵ) such that
there is an FPTAS for ZG(q, β) where G is a d-regular 2-expander providing the
following conditions hold:

• q = poly(d)

• β /∈ (2± ϵ) ln(q)d

The main result shown was that

Theorem 3. For each ϵ > 0, and d large enough, there is an FPTAS for
ZG(q, β) where G for the class of d-regular triangle-free 1-expander grpahs pro-
viding the following conditions hold:

• q ≥ poly(d)

• β /∈ (2± ϵ) ln(q)d

This was previously known for:

• Stronger expansion and d = qΩ(d)

• Higher temperature and q = dΩ(d)

Something to note here is that q ≥ poly(d) should not be a necessary condition.

As well as as in the case β ≤ (1− ϵ)β0 does not require expansion or even that
q ≥ poly(d).

2.6 Potts Distribution

We first write the order-disorder threshold of the ferromagnetic Potts model

β0 :=ln(
q − 2

(q − 1)1−2/d − 1
)

β0 =2
lnq

d
(1 +O(

1

q
))

(14)
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We want to be able to know more about how the Potts distribution looks for
β < (1− ϵ)β0 and for β > (1 + ϵ)β0

Figure 2: Rough picture of the Potts model

2.7 Results

Another result we have is:

Theorem 4. For each ϵ > 0, let d be large enough q ≥ poly(d), and G be a
d-regular 2-expander graph on n vertices then,

• For β < (1 − ϵ)β0, every colour class has size n/q(1 ± o(1)) with high
probability

• For β > (1+ϵ)β0, every colour class has size n−o(n) with high probability

The strategy we have, to prove the theorem for β < (1− ϵ)β0:

• Pass to the Random Cluster Model

• Distribution on subsets of edges: p(A) ∝ qk(A)(eβ − 1)|A|

• ZRC
G (q, β) = ZPotts

G (q, β)

• Sampling algorithm: Sample from random cluster model, give each con-
nected component a uniform color

• Standard polymer methods + careful enumeration

14



2.8 Polymer Methods

The motivating idea is to visualize the state for β large at low temperature as
ground state + defects.

Typical Colouring = Ground State + Defects

Polymer methods are pretty useful in such cases. These were first proposed in
[8] and originated in statistical physics. We take G to be our defect graph and
each node in this represents a defect.

Now using Polymer methods X ∼G Y

Figure 3: Proof Schematic

Ideas is to ZG(q, β) ∼ Zred + Zblue + . . . where Zred ≈ eβnd/2

Zrede
−βnd/2 =

∑
I⊂V (G)

∏
γ∈I wγ where wγ is the weight of polymer γ.

We now move towards cluster expansion: multivariate in the wγ Taylor
expansion of:

ln(
∑

I⊂V (G)

∏
γ∈I

wγ)

This is an infinite sum, so convergence is not guaranteed however convergence
can be established by verifying the Kotecký-Preiss criterion.

We also want to answer how many connected subsets are there of a given edge
boundary in an η-expander?

15



A heuristic we have is to count the number of such subsets that contain a given
vertex u: a typical connected subgraph of size a is tree-like, i.e., has edge bound-
ary a · d.

Working backward, a typically connected subgraph with edge boundary size b
has O(b/d) vertices. The number of such subgraphs ≤ number of connected
subgraphs of size O(b/d) containing u. The original number of subsets is also
≤ Number of rooted (at u) trees with O(b/d) vertices and maximum degree at
most d = dO(b/d). Thus,

Theorem 5. At most dO(1+1/η)b/d connected subsets in an η expander that
contains u have edge boundary of size at most b.

Another question to ask is how many q-colorings of an η-expander induce at
most k non-monochromatic edges?

Easiest way is to make k non-monochrimatic edges is to color all but k/d ran-
domly chosen vertices with the same color. Now, k small =⇒ these vertices
likely form an independent set. we now color these k/d vertices arbitrarily.
There are: (

n

k/d

)
qk/d+1

ways.

Theorem 6. For η-expanders and q ≥ poly(d) there are at most n4qO(k/d)

possible colourings.

Now we also know the maximum value of ZG(q, β) over all graphs G with n
vertices, m edges, and max degree d. This will always be attained when G is a
disjoint union of Kd+1 and K1
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3 Statistical Learning using Compression

18th October 2022

The related paper: Adversarially Robust Learning with Tolerance by Ashtiani
et al. [9]. Seminar by Hassan Ashtiani.

3.1 Abstract

Characterizing the sample complexity of different machine learning tasks is one
of the central questions in statistical learning theory. For example, the clas-
sic Vapnik-Chervonenkis theory characterizes the sample complexity of binary
classification. Despite this early progress, the sample complexity of many im-
portant learning tasks — including density estimation and learning under ad-
versarial perturbations — are not yet resolved. In this talk, we review the less
conventional approach of using compression schemes for proving sample com-
plexity upper bounds, with specific applications in learning under adversarial
perturbations and learning Gaussian mixture models.

3.2 Some background

We start by defining some notation:

• Z: domain set

• DZ : distribution over Z

• S: i.i.d sample from DZ

• H: class of models/hypotheses

• L(DZ , H)→ R: loss/ error function

• OPT = infh∈HL(Dz, h): best achievable

• AZ,H : Z∗ → H: learner

3.3 Density Estimation

Our goal is that for every DZ , AZ,H(S) we want it to be comparable to OPT
with high probability.

We take the example of density estimation in this case L(DZ , h) = dTV (Dz, h).
Now, AZ,H probably approximately correct learns H with m(ϵ, δ) samples if for

all DZ and for all ϵ with a δ ∈ (0, 1). Now if S ∼ Dm(ϵ,δ)
Z then:

Pr
S
[L(DZ , AZ,H(S)) > ϵ+ C ·OPT ] < δ (15)
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Now if we take the example of C = 2, let H be the set of all Gaussians in Rd

then:

m(ϵ, δ) = O

(
d2 + log 1/δ

ϵ2

)
We will now modify the above equation. Now, AZ,H probably approximately
correct learns H with m(ϵ) samples if for all DZ and for all ϵ ∈ (0, 1). Now if

S ∼ Dm(ϵ)
Z then:

Pr
S
[L(DZ , AZ,H(S)) > ϵ+ C ·OPT ] < 0.01 (16)

For the example of C = 2, let H be the set of all Gaussians in Rd then:

m(ϵ, δ) = O

(
d2

ϵ2

)

3.4 Binary Classification (with adv. pertubations)

For the example of binary classification, we have Z = X × {0, 1} and h is some
model which maps from h : X → {0, 1}.

We also have l(h, x, y) = 1h(x) ̸= y and then we will have the L be L(DZ , h) =
E(x,y)∼DZ

l(h, x, y).

Now, AZ,H probably approximately correct learns H with m(ϵ) samples if for

all DZ and for all ϵ ∈ (0, 1). Now if S ∼ Dm(ϵ)
Z then:

Pr
S
[L(DZ , AZ,H(S)) > ϵ+ C ·OPT ] < 0.01 (17)

Now H is the set of all half spaces in Rd then:

m(ϵ) = O

(
d

ϵ2

)
For the example of binary classification, we have Z = X × {0, 1} and h is some
model which maps from h : X → {0, 1}.

We also have lU (h, x, y) = adversarial pertubations and then we will have the
LU be LU (DZ , h) = E(x,y)∼DZ

lU (h, x, y).

Now, AZ,H probably approximately correct learns H with m(ϵ) samples if for

all DZ and for all ϵ ∈ (0, 1). Now if S ∼ Dm(ϵ)
Z then:

Pr
S
[LU (DZ , AZ,H(S))ϵ+OPT ] < 0.01 (18)

Now, consider the following H1 and H2:
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Figure 4: Trade Offs

Here H2 is richer which can make it contain better models as well as harder to
learn. We can characterize the sample complexity of learning H using Binary
classification, with Binary classification with adversarial perturbations or with
Density estimation.

In the case of binary classification the VC-dimension quantifies complexity:

m(ϵ) = Θ

(
V C(H)

ϵ2

)
The upper bound here is achieved using simple ERM

L(S, h) =
1

|S|
∑

(x,y)∈S

l(h, x, y)

h = argminh∈HL(S, h)

And then for uniform convergence:

suph∈H |L(S, h)− L(Dz, h)| = O

(√
V C(H)

|S|

)
w.p. > 0.99 (19)

We now introduce sample compression as an alternative.

3.5 Sample Compression

The idea is to try and answer how should we go about compressing a given train-
ing set? In classic information theory, we would compress it into a few bits. In
the case of sample compression, we want to try to compress it into a few samples.
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If we just take the simple example of linear classification Number of required
bits is unbounded (depends on the sample).

It has already been shown by Littlestone and Warmuth [10] that Compressibility
=⇒ Learnability

m(ϵ) = Õ

(
k

ϵ2

)
It has also been shown by Moran and Yehudayoff [11] Compressibility ⇐=
Learnability

k = 2O(V C)

Conjecture 1 (Compression Conjecture). k = Θ(V C)

Sample Compression can be very helpful by:

• being simpler and more intuitive

• being more generic. It can work even if uniform convergence fails! Can
show optimal SVM bound and we can also perform compression for learn-
ing under Adversarial Perturbations.

Typical classifiers are often:

• Sensitive to “adversarial” perturbations, even when the noise is “imper-
ceptible”

• Vulnerable to malicious attacks

• Ignore the “invariance” or domain-knowledge

In the case of classification with adversarial perturbations we had l0/1(h, x, y) =
1{h(x) ̸= y} and lU (h, x, y) = supx̄∈U(x)l

0/1(h, x̄, y)

and then we will have the LU be LU (DZ , h) = E(x,y)∼DZ
lU (h, x, y).

Now, AZ,H probably approximately correct learns H with m(ϵ) samples if for

all DZ and for all ϵ ∈ (0, 1). Now if S ∼ Dm(ϵ)
Z then:

Pr
S
[LU (DZ , AZ,H(S))ϵ+OPT ] < 0.01 (20)

However one of the problems with this is if the robust ERM works for all H

L(S, h) =
1

|S|
∑

(x,y)∈S

l(h, x, y)

h = argminh∈HL(S, h)
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The robust ERM would not work for all H, uniform convergence can fail,

suph∈H |LU (S, h)− LU (Dz, h)|

can be unbounded.

We can say that any “proper learner” (outputs from H) can fail.

In a compression-based method the decoder should recover the labels of the
training set and their neighbors and then compress the inflates set:

k = 2O(V C)

So,

mU (ϵ) = O

(
2V C(H)

ϵ2

)
(21)

There is an exponential dependence on V C(H).

Ashtiani et al. [9] introduced tolerant adversarial learning AZ,H PAC learns H
with m(ϵ) samples

if ∀DZ , ∀ϵ ∈ (0, 1), if S ≃ Dm(ϵ)
Z then

PrS [L
U (DZ , AZ,H(S)) > ϵ+ infh∈HL

V (DZ , AZ,H(S))] < 0.01 (22)

And,

mU,V (ϵ) = Õ

(
V C(H)d log(1 + 1

γ )

ϵ2

)
(23)

The trick is to avoid compressing an infinite set and now our new goal is that
the decoder should only recover labels of things in U(x).

To do so we can define a noisy empirical distribution (using V (x)) and then use
boosting to achieve a super small error with respect to this distribution. And
then, we encode the classifier using the samples used to train weak learners and
the decoder smooths out the hypotheses.

It is interesting to think of Why do we need tolerance? There do exist some
other ways to relax the problem and avoid 2O(V C)

• bounded adversary

• Limited black-box query access to the hypothesis

• Related to the certification problem

This is also observable in the density estimation example.
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3.6 Gaussian Mixture Models

Gaussian mixture Models are very popular in practice and are one of the most
basic universal density approximators. These are also the building blocks for
more sophisticated density classes and can think of them as multi-modal versions
of Gaussians.

f(x) = w1N(x|µ1,
∑

1) + w2N(x|µ2,
∑

2) + w3N(x|µ3,
∑

3)

We say F is Gaussian Mixture Model with k components in Rd. And we want
to ask how many samples is needed to recover f ∈ F within L1 error ϵ.

The number of samples ≃ m(d, k, ϵ).

To learn single Gaussian in Rd then

O

(
d2

ϵ2

)
= O

(
#params

ϵ2

)
samples are sufficient (and necessary).

Now if we have k Gaussian in Rd then we want to know if

O

(
kd2

ϵ2

)
= O

(
#params

ϵ2

)
samples are sufficient?

There have been some results on learning Gaussian Mixture Models.

Let us take the example of this graph. For a moment look at this as a binary
classification problem. The decision boundary has a simple quadratic form!

V C − dim = O(D2)

Here “Sample compression” does npt make sense as there are no “labels”.

3.7 Compression Framework

We have F which is a class of distributions (e.g. Gaussians) and we have. If
A sends t points from m points and B approximates D then we say F admits
(t,m)-compression.

Theorem 7. If F has a compression scheme of size (t,m) then sample com-
plexity of learning F is

Õ

(
t

ϵ2
+m

)
Õ(·) hides polylog factors.
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Figure 5: A sample problem

Small compression schemes imply sample-efficient algorithms.

Theorem 8. If F has a compression scheme of size (t,m) then k mixtures of
F admits (kt, km) compression.

Distribution compression schemes extend to mixture classes automatically! So
for the case of GMMs in Rd it is enough to come up with a good compression
scheme for a single Gaussian!

For learning mixtures of Gaussians, the encoding center and axes of ellipsoid is
sufficient to recover N(µ,Σ). This admits Õ(d2, 1ϵ ) compression! The technical
challenge is encoding the d eigenvectors “accurately” using only d2 points.

σmax

σmin
can be large which is a technical challenge.

3.8 Conclusion

• Compression is simple, intuitive, generic

• Compression relies heavily on a few points

– But still can give “robust” methods

– Agnostic sample compression

– Robust target compression

• Target compression is quite general

– Reduces the problem to learning from finite classes

– Does it characterize learning?
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